The Gas-phase Acidity of the Phenyl Radical and Some C₆H₄X[.] (X = **F, CI, CN) Radicals**

Henri E. K. Matimba, Astrid M. Crabbendam, Steen lngemann and Nico M. M. Nibbering"

lnstitute of Mas Spectrometry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry has been used to determine the gas-phase acidities (values in parentheses) of the radicals C₆H₅[.] (1592 kJ mol-1), C₆H₄F[.] (1565 kJ mol-1), C₆H₄Cl[.] (1554 kJ mol⁻¹) and C₆H₄CN[.] (1554 kJ mol⁻¹).

The gas-phase acidities of numerous stable molecules have been determined either by studying proton transfer equilibria or by observing the occurrence/non-occurrence of proton transfer in reactions between the conjugate bases and reference compounds with a known acidity.^{1,2} The studies of gas-phase acidities may serve as an experimental basis for insight into the structural properties that determine the stability and reactivity of anions in the absence of solvent molecules. In this respect, little is known about radical anions notwithstanding that studies **of** the gas-phase bimolecular chemistry of these species can provide knowledge about the acidity of radicals and the influence of a radical centre on the rate of proton transfer.

The gas-phase acidity, $\Delta H_{\text{acid}}^0(HA)$, can be written as the difference between the bond dissociation energy, $E_d(HA)$, and the electron affinity of A^{\cdot}, $E_{ea}(A^{\cdot})$, plus the ionization energy of the hydrogen atom, $E_i(H)$, eqn. (1).^{1,2}

$$
\Delta H_{\text{acid}}^{0}(HA) = E_{d}(A-H) - E_{\text{ea}}(A^{+}) + E_{i}(H) \tag{1}
$$

Accordingly, the difference in acidity between a radical and the parent molecule is determined by the appropriate E_d and

 E_{ea} values. For example, CH₃⁺ is *ca*. 36 kJ mol⁻¹ more acidic in the gas phase than CH_4 mainly as a result of a larger E_{ca} of The same order of gas-phase acidities of a radical and the parent molecule is reported for other systems, e.g. H₂C=CH⁺/ $H_2C=CH_2⁵⁻⁸$ and Ph-N-NH-Ph/Ph-NH-NH-Ph⁹ while the cyclopentadienyl radical is much less acidic than cyclopentadiene in the gas phase.^{8,10} CH_2 than of CH_3 ⁺ $[E_{ea}(CH_2) - E_{ea}(CH_3^{\bullet}) = 55 \text{ kJ} \text{ mol}^{-1}]^{3.4}$

The gas phase acidity of C_6H_5 ^t has been placed at *ca.* 1640 kJ mol⁻¹ on the basis of an experimental E_{ea} of *o*-benzyne of 54 kJ mol⁻¹ and $\Delta H_1^0(o\text{-}C_6H_4) = 494 \text{ kJ}$ mol⁻¹.¹¹ Recently, we published a revised value of the heat of formation of o -benzyne of 440 kJ mol^{-1,12} This value in combination with the reported E_{ea} of *o*-benzyne leads to $\Delta H_{acid}^0(C_6H_5^{\bullet}) = 1587$ kJ mol⁻¹, which implies that the *ortho-positions* with respect to the radical centre in C_6H_5 ^{*} should have approximately the same acidity in the gas phase as methanol ($\Delta H_{\text{acid}}^0 = 1592 \text{ kJ}$ mol⁻¹). ^{1,2} The conjugate base of the phenyl radical, C_6H_4 ⁻⁻, is known to be formed by a formal H_2 ⁺ abstraction from benzene by the O^{-1} radical anion.¹³ This reaction results predominantly in the radical anion of o -benzyne as indicated

Table 1 Gas-phase acidities, ΔH_{acid}^0 , of the C₆H₅X compounds and the C_6H_4X radicals

Compound	$\Delta H^0_{\rm acid}$ kJ mol ⁻¹	Radical	$\Delta H^0_{\rm acid}$ kJ mol ^{-1}	
C_6H_6	1677 ± 2^a	C_6H_5	$1592 + 8d$	
C_6H_5F	1620 ± 8^b	$C_6H_4F^*$	1565 ± 6 ^e	
C_6H_5Cl	1612 ± 12^{c}	$C_6H_4Cl^*$	1554 ± 6^{0}	
C_6H_5CN	1603 ± 8^{b}	C_6H_4CN	1554 ± 6^{0}	

a Value from refs. 2, 20. *b* Value from ref. 20. *c* This work; bracketed between the acidities of C_6H_5F and C_6H_5CN . d See text. e Bracketed between the acidities of $(CH_3)_2$ CHOH (1571 kJ mol⁻¹) and $(CH_3CH_2)_2CHOH$ (1559 kJ mol⁻¹); values from refs. 1,2. *f* Bracketed between the acidities of $(CH_3CH_2)_2$ CHOH and FCH_2CH_2OH (1548 $kJ \text{ mol}^{-1}$); value from refs. 1,2.

~~ ~~

by photoelectron spectroscopy, 11 the nearly exclusive abstraction of HD⁺ in the reaction of O⁻ with 1,3,5-trideuteriobenzene¹³ and the almost negligible occurrence of D_2 ⁺ abstraction (1-2%) in the reaction of O^- with 1,4-dideuteriobenzene.¹⁴ The C₆H₄⁻⁻ ion exchanges all hydrogen atoms for deuterium atoms in the presence of D_2O in our FT-ICR¹⁵⁻¹⁷ instrument, \dagger but no hydroxide ions are formed. \ddagger Reaction with $CH₃OH$ proceeds by proton abstraction, while exchange of one hydrogen atom occurs in the presence of $CD₃OD$ along with formation of methoxide ions. These results support the estimated gas-phase acidity of the *ortho*-positions in C_6H_5 . and we place $\Delta H_{\text{acid}}^0(C_6H_5^{\star})$ at 1592 \pm 8 kJ mol⁻¹. The phenyl radical is thus ca. 85 kJ mol⁻¹ more acidic in the gas phase than benzene $(\Delta H_{\text{acid}}^0(C_6H_6) = 1677 \text{ kJ} \text{ mol}^{-1})^{2.20}$ (see Table 1).

The revised gas-phase acidity of C_6H_5 leads to a E_d of the C-H bond *ortho* to the radical position in C_6H_5 of 334 kJ mol⁻¹ which is ca. 130 kJ mol⁻¹ lower than the value for the C-H bonds in C_6H_6 .^{1,2} The difference in C-H E_d is partly compensated by the larger E_{ea} of C_6H_5 ^t *(ca.* 99 kJ mol⁻¹)² than of o -benzyne (54 kJ mol⁻¹)¹¹ and as a result the phenyl radical is 85 kJ mol⁻¹ more acidic in the gas phase than benzene.

The reaction between O^{-1} and the C_6H_5X (X = F, Cl, CN) compounds proceeds to some extent by H_2^{++} abstraction. The results in Table 1 show that the C_6H_4X radicals are significantly more acidic in the gas phase than the corresponding C_6H_5X molecules. The difference in acidity for C_6H_5F and C_6H_4F is ca. 55 kJ mol⁻¹ while the C_6H_4CN radical appears to be *ca*. 49 kJ mol⁻¹ more acidic than C_6H_5CN in the gas phase. The effect of the radical centre on the acidity is thus less pronounced for the substituted species than for the C_6H_5 - C_6H_6 system.

The formation of isomeric radical anions from the C_6H_5X compounds is indicated by the occurrence of H_2 ⁺ as well as $HD^{\text{+}}$ abstraction in the reaction of O^{-} with para-deuteriofluorobenzene. The ion formed by HD⁺⁺ abstraction slowly exchanges hydrogen atoms for deuterium atoms in the presence of D_2O , \ddagger but after a reaction time of *ca*. 2 s the distribution of the ions $C_6H_3F^{-1}$ (50%), $C_6H_2DF^{-1}$ (38%), $C_6HD_2F^{-1}$ (10%) and $C_6D_3F^{-1}$ (2%) remains essentially constant. No exchange occurs between the ion formed by H_2 ⁺ abstraction and D_2O indicating that this ion is less basic than the ion formed by HD^+ abstraction and that the latter ion may isomerize to the former ion in the presence of water. These results imply a different gas-phase acidity of the isomeric C_6H_4F radicals and/or a different acidity of the various positions within a given radical.

The reaction of O^{-1} with *para*-deuteriochlorobenzene and *para*-deuteriobenzonitrile proceeds also in part by H_2 ⁺ and HD⁺ abstraction. Hydrogen/deuterium exchange between the radical anions from these substrates and D_2O is not observed to any significant extent, which may mean that the ions formed are not sufficiently basic in the gas phase to undergo exchange with water. The acidities listed in Table 1 are based upon experiments in which the $C_6H_3X^{-1}$ ions were reisolated with a delay of about 800 ms? thus allowing the more basic isomer(s) to react with the reference acid either by proton transfer or by isomerization into the less basic isomer(s). In conclusion, the values in Table 1 are expected to refer to the conjugate acids of the less basic radical anions formed in the reaction of O^{-1} with the C₆H₅X compounds. Further studies concerned with the formation of isomeric $C_6H_3X^{-1}$ radical anions in the reactions of O^{-1} with C_6H_5X compounds and the question of the acidity of the different sites within the phenyl radicals are in progress.

The authors thank the Netherlands Organization for Scientific Research (SON/NWO) for financial support and Mrs T. **A.** Molenaar-Langeveld for the synthesis of the labelled benzenes.

Received, 29th January 1991; *Corn.* 110041 9K

References

- 1 J. E. Bartmess and R. T. McIver, Jr., in *Gas Phase Ion Chemistry,* ed. M. T. Bowers, Academic Press, New York, 1979, vol. 2, ch. 11, p. 87.
- 2 **S.** G. Lias, **J.** E. Bartmess, J. F. Liebman, J. **L.** Holmes, R. D. Levin and **W.** G. Mallard, *J. Phys. Chem. Ref. Data,* 1988, **17,** suppl. 1.
- 3 C. H. DePuy, S. E. Barlow,,J. M. van Doren, C. R. Roberts and V. M. Bierbaum, *J. Am. Chem. SOC.,* 1987, 109,4414.
- **4** *G.* B. Ellison, P. C. Engelking and W. C. Lineberger, *J. Am. Chem. SOC.,* 1978, 100,2556.
- *5* J. H. J. Dawson and N. M. M. Nibbering, *J. Am. Chem. SOC.,* 1978, 100, 1928.
- 6 Y. Guo and J. J. Grabowski, *Inst. J. Mass Spectrom. Ion Processes,* 1990, **97,** 253.
- 7 C. H. DePuy, **S.** Gronert, **S.** E. Barlow, V. M. Bierbaum and R. Damrauer, *J. Am. Chem. Soc.*, 1989, 111, 1968.
- 8 R. N. McDonald, *Tetrahedron,* 1989, **45,** 3993.
- 9 **S.** Ingemann, R. H. Fokkens and N. M. M. Nibbering, *J. Org. Chem.,* 1990, **50,** 607.
- 10 R. N. McDonald, A. K. Chowdhury and D. W. Setser, *J. Am. Chem. SOC.,* 1980, 102, 6491.
- 11 D. G. Leopold, A. E. S. Miller and W. C. Lineberger, *J. Am. Chem. SOC.,* 1986, 108, 1379.
- 12 J. M. Riveros, **S.** Ingemann and N. M. M. Nibbering, *J. Am. Chem. SOC.,* 1990, **113,** 1053.
- 13 A. P. Bruins, A. J. V. Ferrer-Correia, A. G. Harrison, **K.** R. Jennings and R. K. Mitchum, *Adv. Mass Spectrum.,* 1978, **7A,** *355.*
- 14 A. **M.** Crabbendam, **S.** Ingemann and N. M. M. Nibbering, unpublished results.
- 15 A. G. Marshall and **F.** R. Verdum, *Fourier Transforms in NMR, Optical and Mass Spectrometry,* Elsevier, Amsterdam, 1990.
- 16 L. J. de Koning, C. W. F. Kort, F. **A.** Pinske and N. M. M. Nibbering, *Int. J. Mass Spectrom. Ion Processes,* 1989, **96,** 71.
- 17 R. A. L. Peerboom, **S.** Ingemann, N. M. M. Nibbering and J. F. Liebman, *J. Chem. SOC., Perkin Trans. 2,* 1990, 1825.
- 18 N. M. M. Nibbering, *Adv. Phys. Org. Chem.,* 1988, 24, 1.
- 19 **J.** J. Grabowski, C. H. DePuy, J. M. van Doren and V. **M.** Bierbaum, *J. Am. Chem. SOC.,* 1985, 107,7384.
- 20 **M.** Meot-Ner and **S. A.** Kafafi, *J. Am. Chem. SOC.,* 1988, 110, 6297.

t The general experimental procedure is described in refs. 16,17 and references cited therein. The 0-* ion was formed by dissociative electron capture to N_2O (electron energy 1.2 eV). The experiments were performed with a total pressure in the FT-ICR cell of about 8 \times 10^{-5} Pa and with 1:1:1 mixtures of N₂O, C₆H₆ or C₆H₅X and the reference acid. The ions of interest were isolated by ejecting all other ions from the cell (see refs. 15-17) at a trapping time of 150-250 ms. The $C_6H_3X^{-1}$ ions were reisolated with a delay of 750-950 ms for the purpose of observing the occurrence/non-occurrence of proton transfer.

^{\$} Hydrogen/deuterium exchange reactions of anions are discussed in refs. 18, 19. The process may occur when the exchange reagent is ≤ 80 kJ mol⁻¹ less acidic in the gas phase than the conjugate acid of the anion.